在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。
相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合即元素属于B但不属于A。
绝对补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集。
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)
在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。
相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合即元素属于B但不属于A。
绝对补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集。
24h全国客户服务热线,欢迎咨询!
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。
联系邮箱:chuangshanghai#qq.com(把#换成@)
Copyright © 转乾企业管理-百问网 版权所有