齐次线性方程组的通解

来源:互联网 时间:2024-11-03 15:27:21 人看过

可以把齐次方程组的系数矩阵看成是向量组。

令自由元中一个版为1,其余为0,求得n–r个解向量,即为一个基础解系。齐次线性方程组AX=0:若X1,X2…,Xn-r为基础解系,则权X=k1X1+k2X2+…+kn-rXn-r,即为AX=0的全部解(或称方程组的通解)。

齐次线性方程组

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

4、齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)

本文标签

齐次线性方程组的通解

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。

联系邮箱:chuangshanghai#qq.com(把#换成@)

Copyright © 转乾企业管理-百问网 版权所有

黔ICP备2023009682号