勾股定理的证明方法如下:
1、以a b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。
2、AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。
3、证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。
4,用无穷级数证明。
5,用高斯公式证明。
2020-11-13
勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方,即在以a、b为直角边,c为斜边的三角形中有a^2+b^2=c^2。
证法一:
以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线。
∵Rt△HAE≌Rt△EBF
∴∠AHE=∠BEF
∵∠AHE+∠AEH=90°
∴∠BEF+∠AEH=90°
∵A、E、B共线
∴∠HEF=90°,四边形EFGH为正方形
由于上图中的四个直角三角形全等,易得四边形ABCD为正方形
∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积
∴(a+b)^2=4•(1/2)•ab+c^2,整理得a^2+b^2=c^2
证法二:
如上图所示两个边长为a+b的正方形面积相等
所以a^2+b^2+4•(1/2)•ab=c^2+4•(1/2)•ab,故a^2+b^2=c^2。
证法三:
以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼。
易得四边形ABCD和四边形EFGH都是正方形
∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积
∴c^2=4•(1/2)•ab+(b-a)^2 ,整理得a^2+b^2=c^2
证法四:
如下图所示。
易得△CDE为等腰直角三角形
∴梯形ABCD的面积=两个直角三角形的面积+一个等腰三角形的面积
∴1/2•(a+b)•(a+b)=2•(1/2)•ab+(1/2)•c^2,整理得a^2+b^2=c^2
证法五:
以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使DEF在同一直线上,过C点作CI垂直于DF,交DF于I点。
易得四边形ABEG、四边形CBDI、四边形FGHI都为正方形。
∴多边形EGHCB的面积=正方形ABEG的面积-两个直角三角形的面积
且多边形EGHCB的面积=正方形CBDI的面积+正方形FGHI的面积-两个直角三角形的面积
∴正方形ABEG的面积=正方形CBDI的面积+正方形FGHI的面积
∴c²=a²+b²