等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
等比数列
An+1/An=q,n为自然数.
通项公式
An=A1*q^(n-1);
推广式
An=Am·q^(n-m);
求和公式
Sn=nA1(q=1)
Sn=[A1(1-q)^n]/(1-q)
性质
①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方.
对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:a2=a1*q,
a3=a2*q,
a4=a3*q,
an=an-1*q,
将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。
此外,当q=1时该数列的前n项和:Sn=nA1(q=1)
当q≠1时该数列前n项的和:Sn=[A1(1-q)^n]/(1-q)
等差数列
对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定之差位公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为An=A1*q^(n-1)
,其求法很重要,利用了“叠加原理”的思想:
将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,,也即,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2位公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。