arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。
如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且
[f−1(x)]′=1f′(y)或dydx=1dxdy
[f−1(x)]′=1f′(y)或dydx=1dxdy
这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。
三角函数求导公式:
(arcsinx)=1/(1-x^2)^1/2
(arccosx)=-1/(1-x^2)^1/2
(arctanx)=1/(1+x^2)
(arccotx)=-1/(1+x^2)
(arcsecx)=1/(|x|(x^2-1)^1/2)
(arccscx)=-1/(|x|(x^2-1)^1/2)
上一篇:网上交友的好处和坏处
下一篇:个人年度总结写什么
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)
arcsinx求导