均值不等式一般形式:a>0,b>0,(a十b)/2≥根号ab,当且仅当a=b时取等号。证明方法一(作差比较法)(a十b)/2一√ab=(a+b-2√ab)/2=(√a一√b)^2/2≥0。所以(a十b)/2≥√ab。
方法二(利用分析法)欲证基本不等式,须证a^2十b^2十2ab≥4ab,即证a^2十b^2一2ab≥0,即只需要(a一b)^2≥0,这显然成立。所以基本不等式成立
免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)
均值不等式的证明