除法的求导公式
(u/v)'=(u'v-v'u)/(v^2)。
导数公式
1、(logaX)'=1/(Xlna)(a>0,且a≠1)
2、(tanX)'=1/(cosX)2=(secX)2
3、(cotX)'=-1/(sinX)2=-(cscX)2
4、(secX)'=tanXsecX
导数性质
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
基本初等函数的导数表
1.y=cy'=0
2.y=α^μy'=μα^(μ-1)
3.y=a^xy'=a^xlna
y=e^xy'=e^x
4.y=loga,xy'=loga,e/x
y=lnxy'=1/x
5.y=sinxy'=cosx
6.y=cosxy'=-sinx
7.y=tanxy'=(secx)^2=1/(cosx)^2
8.y=cotxy'=-(cscx)^2=-1/(sinx)^2
9.y=arcsinxy'=1/√(1-x^2)
10.y=arccosxy'=-1/√(1-x^2)
11.y=arctanxy'=1/(1+x^2)
12.y=arccotxy'=-1/(1+x^2)
13.y=shxy'=chx
14.y=chxy'=shx
15.y=thxy'=1/(chx)^2
16.y=arshxy'=1/√(1+x^2)
求导公式
c'=0(c为常数)
(x^a)'=ax^(a-1),a为常数且a≠0
(a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a>0且a≠1
(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
(uv)'=uv'+u'v
(u+v)'=u'+v'
(u/)'=(u'v-uv')/^2
上一篇:彼且奚适也的奚是什么意思
下一篇:什么是无所谓