函数连续一定可导吗

来源:互联网 时间:2025-09-04 05:22:36 1人看过

连续的函数不一定可导;可导的函数是连续的函数;越是高阶可导函数曲线越是光滑;存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从***、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f,其中核心是对应法则f,它是函数关系的本质特征。

函数有界性

设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。

如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。

如果存在正数M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。

函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。

函数包含多个类别,根据作用和特点主要分为逻辑函数、文本函数、日期和时间函数、查找和引用函数、数学和三角函数、统计函数、工程函数及信息函数等。

每个函数类别下又包含了众多的不同作用的函数,但同一类别下的函数会具有一定的相同作用和相同特点。

比如日期函数,都是计算日期相关的值,比如day函数是返回指定日期的天数,datedif是计算两个日期之间的间隔等等;而文本函数,则大多是对单元格文本进行处理,如文本提取函数mid,文本合并函数textjoin等等。

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。

联系邮箱:chuangshanghai#qq.com(把#换成@)

Copyright © 转乾企业管理-百问网 版权所有

黔ICP备2023009682号